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We discuss an approach to a problem that arises in this context ifutures which
were thought to be relevant when they were created become irrelevant
through not being needed later in the Computation. The problem of irrel-
evant processes also appears in multiprocessing problem—solving systems
which start several processors working on the same problem but with different
methods , and return with the solution which finishes first. This
p~~allel method strategy has the drawback that the processes which are
investigating the losing methods must be identified, cleanly stepped
and the processors they are using re-assigned to more useful tasks.

The solution we propose is that of incremental garbage collection .
The goal structure of the solution plan should be explicitly represented
in memory as part of the graph memory (like LISPt S heap) so that a •
garbage collection algorithm can discover which processes are performing
useful. work, and which can be recycled for a new task.

An incremental algorithm for the unified garbage collection of storage
and processes is described.
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V
This paper investigates some problems associated with an expression evaluation order that we
call 4future~ order, which is different from caIl.by•name, caft.by•value. and call-by-need. In
future order evaluation, an object called a t’futur/ is created to serve as the value of each 

S

expression that is to be evaluated and separate process is dedicated to its evaluation. This
mechanism allows the fully parallel evaluation of the expressions In a programming language.

We discuss an approach to a problem that arises in this context: futures which were thought to
be relevant when they were created become irrelevant through not being needed later In the
computation. The problem of irrelevant processes also appears in multiprocessing
problem-solving systems which start several processors working on the same problem but with
different methods, and return w ith the solution which finishes first. This para llel method
strategy has the drawback that the processes which are investigating the losing methods must
be identified, cleanly stopped, and the processors they are using re-assigned to more useful
tasks.

The solution we propose is that of incremental garbage collection. The goal structure of the
solution plan should be explicitly represented in memory as part of the graph memory (like
Lisp’s heap) so that a garbage collection algorithm can discover which processes are performing
useful work , and which can be recycled for a new task.

An incremental algorithm for the unified garbage collection of storage and processes is
described.
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1. Introduction

Processors are becoming very cheap and there is good evidence that this trend will continue in the
next few years. As a result, there has been considerable interest in how to apply large numbers of
processors to the solution of a single task (8]. Since efficient utilization of a horde of processors
requires a lot of communication, sorting networks have been devised (2,21) which allow every
processor in an N-processor system to both send and receive a message on every clock pulse.
Furthermore, the transit time through the network is on the average only O(log N) and the size of
the network only O(N log2N). However, it is still not clear how to effectively utilize all of these
processors.

Other researchers (11,5,22] quite rightly note that languages without side-effects, e.g. “pure” LISP,
are excellently suited for the purpose of representing many algorithms intended for execution on a
host of processors since their lack of side-effects eliminates a great source of complexity in parallel
execution. Thus, “Church -Rosser” theorems can be proved which ensure the invariance of the
value of an ex pression regardless of the order or relative speed of evaluation. However, we must
keep in mind that this kind of parallelism does not implement the most general form of
communication between processes. For example, an airline reservation system cannot be
implemented in such a language, due to its non-determinate behavior.

In this paper, we consider an “eager beaver ” evaluator for a language without side-effects, such as
pure LISP. When an expression of the language is given to the evaluator by the user, the
evaluator evaluates it and all of its subexpressions as soon as possible, and in parallel. The
evaluator does this by creating and returning for each subexpresslon a f uture, which is a promise
to deliver the value of that subexpression at some later time, if it has a value. Each future can
evaluate its subexpression independently and concurrently with other futures because it is created
with its own evaluator proces s, which is dedicated to evaluating its subexpression. When the value
of a future is needed explicitly, e.g. by the primitive function “.“, the evaluator of the
subexpression may or may not be complete. If it Is complete, the future’s value is immediately
available; if not, the requesting process is forced to wait until the evaluation of the subexpression is
done.

Futures are created recursively in the evaluation of an expression by our eager evaluator whenever
it encounters functional application. A new future is created for each argument, resulting itt the
parallel (collateral) evaluation of those arguments, while the main process tackles the job of
evaluating the function position and applying it to the tuple of argument futures. We call the
main evaluator process the parent , while the futures It directly creates are its offspring.

More precisely, a future is a triple (process. cell, waiting room), where process is the virtual
processor initialized to evaluate an argument expression in Its proper environment, cell Is a writable
location in memory which will save the value of the argument when It Is ready, to avoid S
recomputing it, and waiting room Is a set of processes which are waiting for the value of this
future.

When the future Is’ created, Its process starts evaluating the subexpresslon in the given
environment. If any other process needs the value of this future before it is ready, the requesting
process enters the waiting room of the future and goes to sleep. When the value promised by the
future is ready, its process stores that value Into the future’s cell, wakes up all of the processes In
the future’s waiting room, and dies. Henceforth, any process needing this future’s value can find It
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in the future’s cell, without waiting or performing any further computation.

Notice that a fu ture of an expression is different from the delayed value (26,23,12,15,10] of the
expression in that the latter are designed to delay evaluation of the expression until the value is
needed while a future immediately dedicates a processor to evaluating the expression. This
difference is both a strength and a weakness of eager evaluation.

The main problem with our eager interpreter Is that It can be wasteful, because it anticipates which
values are going to be required to compute the final result. For example, a process may be assigned
to the computation of a future whose value will never be needed; in this case, we sa y that the
process is irrelevant. If there were no way to determine irrelevancy, these irrelevant processes could
tie up a significant amount of computing power. Furthermore, If a process was assigned to evaluate
a non-terminating expression. its computational power would be lost to the system forever! In the
following sections, we argue that the “garbage collection” of passive storage can be extended to the
reclamation of these irrelevant active processes. Furthermore, we show that this garbage collection
can be done incrementally, thus eliminating the long delays classically associated with garbage
collection.

2. Garbage Collecting Irrelevant Future s

A classical garbage collector for passive storage starts by marking the root of the heap of passive
storage nodes, and proceeds by propagating marks from marked nodes to their offspring, until
there is no unmarked node with a marked parent. Upon the completion of this process, any nodes
which are still unmarked are not accessible from the root; hence they are declared garbage and

S returned to the list of available free nodes.

The key to garbage collecting active processes is that active process’s process-states are addressable
as vectors of words in the common address space of all the processors. but marked with a special
type code. These vectors store the contents of the registers of the processes, plus additional status
information. We claim that processes whose process-states become inaccessible from the root are
irrelevant and should be reclaimed. The top-level process--that assigned to the top level future--is
always relevant since the user , expects an answer , and therefore it is always directly accessible from
the root of the heap. Any offspring of this future whose values are still required are accessible to
it. Hence by induction, relevant processes remain accessible from the root. If a future becomes
inaccessible from the root, then no other process can access its value--even when it is ready--and
hence the future and its process are irrelevant.

In order that all irrelevant processes be identified as soon as possible, we must make sure that all
processes classified as accessible are truly relevant to the computation. An example of a process
which is accessible but irrelevant is that of a loiterer , I.e. a process which is accessible only through
the “waiting room” of some future. A loiterer is waiting for the value of one or more futures, but
whose value is not needed by any other process. Loiterers cannot be immediately garbage collected
because of the outstanding waiting-room pointers to them, but they need not be restarted. If a
loiterer is encountered In a second garbage collection, It can at that time be reclaimed. Hence,
wa iting-room accessibility is a second-class form of accessibility which will not protect a loiterer
from eventually being garbage collected.

2
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If busy waiting is used, waiting rooms are not necessary, and thus their pointers do not require
special treatment by the garbage collector. However, busy waiting requires that a high price be
paid for communication channels between the waitor and the waitee, because the incessant queries
clog these channels.

Garbage collection Is made incremental by using some of the Ideas from an earlier paper (13, which
in turn is based on the work of Dijkstra (6,7] and Lamport (17,18]. The mark phase of our
Incremental garbage collector process employs three colors for every obj ect--white, grey, and black.
Intuitively, white nodes are not yet known to be accessible, grey nodes are known to be accessible,
but whose offspring have not yet been checked, and black nodes are accessible, and have accessible
of fspring. Initially, all nodes (including processes) are white. A white node is made grey by
shading it; i.e. making ft “at least grey” (6), while a grey node is marked by shading IS offspring
and making the node black--both Indivisible processes. Marking is Initiated by stopping aU
processes and shading the root. Marking proceeds by finding a grey node, shading its offspring,
then making that node black. When there are no more grey nodes, garbage collection Is done; all
still-white nodes are then emancipated and the colors white and black switch Interpretations.

Although all user processes must be stopped when garbage collection Is begun, a user process can
be restarted as soon as it has been blackened by the collector. Since the top-level process Is pointed
at directly by the root of the heap, it Is restarted almost Immediately. It should be obvious that
when a process first becomes black, It cannot point directly at a white node. We wish to preserve
this assertion. Therefore, whenever a running black process Is about to violate ft--by inserting into
one of its registers the white component of a node It Is already pointing at--It Immediately shades
the white node before proceeding. Furthermore, ever y new node the process needs is created black.
The intuttive rationale behind these policies is that so far  as any black pr ocess I s concerned, the
garbage collection has already f inished . Furthermore, the nodes which are found accessible by the
garbage collector are exactly those which were accessible at the time the garba ge collection was started.

We prove the correctness of this garbage collector informally. The garbage collector is given a
head start on all of the processes because they are stopped when It is started. When a process is
restarted, ft is black , and everything it sees Is at least grey, hence ft Is in the collector’s wake.
Whenever a process attempts to catch up to the collector by tracing an edge from a node it can
access directly, that node Is Immediately shaded. Therefore, it can never pass or even catch the
collector. Since the collector has already traced any node a process can get Its registers on, the
process cannot affect the connectivity of the nodes that the collector sees. Because white or grey
processes are not allowed to run, any created nodes are black, and since nodes darken
monotonically. the number of white nodes must monotonically decrease, proving termination.

Our garbage collector has only one phase--the mark phase--because It uses a compacting. copying
algorithm [9,4) which marks and copies in one operation. This algorithm copies accessible list
structures from an “old semispace” Into a “new semispace”. As each node Is copied, a “forwarding

S 
address” is left at Its old addr.iss In the old semispace. If the Minsky copying algorithm Is used (93,
the collector has Its own stack to keep track of grey nodes; the Cheney algorithm (43 uses a ‘scan
pointer” to linearly scan the new semispace, while updating the pointers of newly moved nodes by
moving the nodes they point to. The correspondence between our coloring scheme and these
algorithms Is this: white nodes are those which reside In the old semispace grey nodes are those
which have been copied to the new semispace, but whose outgoing pointers have not been updated
to point Into the new semispace (I.e. have not yet been encountered by the scan pointer In the
Cheney algorithm); and black nodes are those which have been both moved and updated (I.e. are

3
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behind the scan pointer). When scanning Is done (I.e. there are no more grey nodes and all
accessible nodes have been copied), the old and new semlspaces then interchange roles.
Reallocating processors is simple; all processors are withdrawn at the start of garbage collection, and
are allocated to each process as it is blackened. Thus, when the garbage collection has finished, all
and only relevant processes have been restarted.

The restriction that white or grey processes cannot run can be relaxed to allow white processes to
run so long as a white process does not cause a black node to poi nt to a white one. Thi s can on ly
happen if the white process Is trying to perform a side-effect (RPLACA or RPLACD in LISP) on
a black node. If operations of this type are suspended until either the process either becomes black
or is garbage-collected, then proper garbage collector operation can be ensured, and convergence
guaranteed. Under these conditions, a process creates new cells of its own color, I.e. white processes
create only white cells. When a white process is encountered by the garbage collector, it must stop
and allow itself to be colored black before continuing.

The notion that processes must be marked as well as storage may explain some of the trouble that
Dijkstra and Lamport had when trying to prove their parallel garbage collection algorithm correct
(6,7,17,18]. Since their algorithm does not mark a user process by coloring it black (thereby
prohibiting it from directly touching white nodes), and allows these white processes to run, the
proof that the algorithm collects only and all garbage is long and very subtle (see [18)).

3. Coroutine s and Generato rs

One problem with our “eager beaver” evaluator Is that some expressions which have no finite
values will continue to be evaluated without mercy. Consider, for example, the Inf inite sequence of
squares of integers 0,l,4,9~.. We give below a set of LISP-like functions for computing such a list. S

squares-begining-with (Xx. (cons (* x x) (squares-begining-with (i x I)))) ; Compute an element.

cons (Xx y. ; Define CONS function.
(Xmessage.

(If (. message ‘car) x
(— message ‘cdr) y)))

car ~ (Xx. (x ‘car)) ; Ask for first component.

cdr (Xx. (x ‘cdt)) ; Ask for second component.

list-of-squares (squares-beginnIng-wIth 0) ; Start the recursion.
S 

The evaluation of “(squares-begInnIng-with 0)” will start off a future evaluating “(cons ...)“, which
will start up another future evaluating “(squares-beginning-with I)”, and so forth. Since this
computation will not terminate, we might worry whether anythIng useful will ever get done. One
wa y to ensure that this computation will not clog the system Is to convert It Into a “lazy”
computation (26,23,12,10) by only allowIng it to proceed past a point in the Infinite list when
someone forces it to go that far. This can be easily done by performing a lambda abstraction on
the ex pression whose evaluatIon Is to be delayed. Since our evaluator will not try to further
evaluate a X-ex presslon, this will protect its body from evaluation by our eager beavers.

4
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squares-begining-with’
(Xx. (cons (“ x x)

V (Xmessage. ((squares-beginlng-wlth’ (. x I)) message)))) ; Protect from early evaluation.

However, this technique is not really necessary if we use an exponential scheduler for the proportion
of effort assigned to each process. This scheduler operates recursively by assigning l0OT~ of the
system effort to the top-level future, and whenever this future spawns new futures, It allocates only
501’. of its allowed effort to Its offspring. WhIle a process Is In the waiting room of a future, It

S 
lends it processing effort to the computation of that future. However, a future which finishes S

returns its effort to helping the system--not Its siblings. Now the set of futures can be ordered
according to who created whom and this ordering forms a tree. As a result of our exponential
scheduling, the further down in this tree a future Is from the top-level future, the lower its priority
in scheduling. Therefore, as our eager beavers produce more squares, they become exponentially
more discouraged. But if other processes enter the waiting room for the square of a large number,
they lend their encouragement to its computation.

Call-by-future evaluation provides for the maximal concurrency possible in evaluating the
expressions of a language. It can provide more parallelism than current data flow machines (0,5] or
“eventual values” (16). For example consider the following program which computes the square root
of the sum of the squares of its arguments S

I (Xx y. (square-root (+ (‘ x x) (~a y y))))

Note that in computing the value of an expression such as the following (k S (f (h 3) (g 4))) that
the square of (h 3) can be performed In parallel with the square of (g 4). In addition the square
root of the sum of these values might be performed after the function k has been entered! Thus
there is a great deal of potential concurrency in the evaluation of the above expression.

In an evaluator which uses call-by-future for CONS, the obvious program for MAPCAR (the
LISP analog of APL’s parallel application of a function to a vector of arguments) will
automatically do all of the function applications in parallel in a “pipe-lined” fashion. However,
due to the scheduler the values earlier in the list will be accorded more effort than the later ones.

Because this scheduler is not omniscient, system effort will still have to be reallocated by the
garbage collector as it discovers irrelevant processes and returns their computing power to help
with still relevant tasks.

4. Time and Space

“Lazy” evaluation (26,12,10) is an optimal strategy (23,3] for evaluating expressions on a single
processor, in the sense that the minimum number of reductions (procedure calls) are made.
However, when more than one processor Is available to evaluate the expression, It is not clear what
strategy would be optimal. If nothing Is known about the particular expression being evaluated, we
conjecture that any reasonable strategy must allocate one processor to lazy evaluation, with the
other processors performIng eager evaluation. We believe that our “eager beaver” evaluator
implements this policy, and unless the processors interfere with one another excessively, a

~~~ computation must always run faster with an eager evaluator running on multiple processors than a
lazy evaluator running on a single processor. If there are not enough processors to allocate one for
every future, then we believe that our “exponential scheduling” policy will do a good Job of

5
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dynamically allocating processor effort where it is most needed.

Although the universal creation of futures should reduce the time necessary to evaluate an
expression. we must consider how the space requirements of this method compare with other
methods. The space requirements of futures are hard to calculate because under certain schedules,
future order evaluation approximates call-by-value, while with other schedules, It is equivalent to
call-by-name (but evaluated only once). In the worst case, the space requirements of futures can be
arbitrarily bad, depending upon the relative speed of the processors assigned to non-terminating S

futures.

5. The Power of Futures

The intuitive semantics associated with a future Is that It runs asynchronously with its parent’s
evatuatio,i. This effect can be achieved by either assigning a different processor to each future, or
by multiplexing all of the futures on a few processors. Given one such Implementation, the
language can easily be extended McCarthy (19] with a construct having the following form:
“(EITHER <e1> <e2> ... <en>)” means evaluate the expressions <e1> In parallel and return the value
of “the first one that finishes”. Ward (24] shows how to give a Scott-type lattice semantics for this
construct. He starts with a power-set of the base domain and gives it the usual subset lattice
structure, then extends each primitive function to operate on sets of elements from the base domain
in the obvious way, and finally defines the result of the EITHER construct to be the least up per
bound (LU B) of all the ce1> in the subset lattice. The EITHER construct is approximated’ by
spawning futures for all the <e1>, anti polling them with the parent process until the first one
finishes. At that point, its answer Is returned as the value of the “EITHER” expression, and the
other futures become inaccessible from the root of the heap.

We give several examples of the power of the “EITHER” construct:

(multiply x y) (EITHER (if x—0 then 0 else (loop))
(if y—O then 0 else (loop))
(ox y))

(integrate ex p bound-variable)
(EITHER (fast-heuristic-integrate exp bound-variable)

(R isch-integrate exp bound-variable))

The first example is that of a numeric product routine whose value is zero if either of its
arguments are zero, even if the non-zero argument Is undefined. The second example Is an
integration routine for use In a symbolic manipulation language like Macsyma, where there is a
relatively fast heuristic integration routine which looks for common special cases, and a general but
slow decision procedure called the Rlsch algorithm. Since the values of both methods are
guaranteed to be the same (assuming that they perform Integration properly), we need not worry
about the possibility of non-determinacy of the value of this expression (i.e. non-singleton subsets
of the base domain in Ward’s lattice model).

I. This implementation is only an approzimation because only singleton sets of elements of the base domain S

can eve r ho returned.

6
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One may ask what the power of such an “EITHER” construct is; i.e. does It increase the expressive
power of the language in which it is embedded? A partial answer to this question has been given
with respect to “uninterpreted” schemata. Uninterpreted schemata answer questions about the
expressive power of programming language constructs which are implicit in the language, rather

S than being simulated. For example, one can compare the power of recursion versus iteration in a
context where stacks cannot be simulated. Hewitt and ~!aterson (13] have shown that uninterpreted
“parallel” schemata are strict ly more powerful than recursive schemata. The essence of this
difference is that parallel schemata can simulate non-deterministic computatIon without bogging
down in some infinite branch by following all branches in parallel.

Also, Ward (24) has shown that the “EITHER ” construct strictly increases the power of the
? -calculus in the sense that there exist functions over the base domain which are inexpressible
wi t hou t “EITHER”, but are trivially expressible with it.

6. Shared Data bases V

S 
- The advantage that garbage collection has over the explicit killing of processes becomes apparent

when parallel processes have access to a shared data base. These data bases are usually protected
from inconsistency due to simultaneous update by a mutual exclusion method. However, if some
process were to be killed while it was inside such a data base, the data base would remain locked,
and hence unresponsive to the other processes requesting access.

S The solution we propose is for the data base to always keep a list of pointers to the processes which
it has currently inside. In this way, an otherwise irrelevant process will be accessible so long as it is
inside an accessible data base. However, the moment it emerges, it will be forgotten by the data
base, and subject to reclamation by garbage collection. The crowds component of a serializer , a
synchronization construct designed to manage parallel access to a shared data base (14],
automatically performs such bookkeeping.

7. Conclusio ns

We have presented a method for managing the allocation of processors as well as storage to the
subcomputations of a computation in a way that tries to minimize the elapsed time required. This
is done by anticipating which subcomputations will be needed and starting them running in
parallel, before the results they compute are needed. Because of this anticipation, subcomputations
may be started whose results are not needed, and thus our method identifies and revokes these
allocations of storage and processing power through an incremental garbage collection method.

The scheme presented here assumes that all of the processors reside in a common, global address
space, like that of HYDRA (25]. Since networks of local address spaces look promising for the
future, methods for garbage collecting those systems need to be developed.

8. Acknowled gements
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has independently discovered these virtues of futures. The main original contributions of this ...) 1paper are our proposal for an exponential scheduler for “eager” evaluation and the methodology
for using incremental garbage collection to reclaim Irrelevant processes and redirect the scheduling
priorities of processes working to produce the values of futures. Concepts similar to that of“futures” have been independently proposed by Friedman and Wise (II] and implemented byHibbard (l6).2 Bob Tennent, Andre l Ersh ov, and Glanfranco Prini made valuable comments on
this paper. 
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2. Hnweve~, since A1~o)-68 does not support “returned functional values”, A scheme in the language neednot us~ garbage collection to disco ver irreleva nt “eventuls”. They can be coerced into values before beingP returne d as the value of a procedure, and hence processor allocation can use a LIFO scheme like that usedfor sto rage of the activation records on the stack. However a certain amount of concurrency can be lostF ~~~~~ by enforcing this coercion. 
S
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